Lecture 7
DEFINITION OF A SEQUENCE
In everyday language, the term “sequence” means a succession of things in a definite order-chronological order, size order, or logical order, for example. In mathematics, the term “sequence” is commonly used to denote a succession of numbers whose order is determined by a rule or a function. We will develop some of the basic ideas concerning sequences of numbers.
Stated informally, an infinite sequence, or more simply a sequence, is an unending succession of numbers, called terms. It is understood that the terms have a definite order; that is, there is a first term a1, a second term a2, a third term a3, a fourth term a4, and so forth.
Such a sequence would typically be written as
a1, a2, a3, a4, . . .
where the dots are used to indicate that the sequence continues indefinitely. Some specific examples are



1, 2, 3, 4, . . . ,                                1, , , , . . . ,
2, 4, 6, 8, . . . , 				1,−1, 1,−1, . . .
Each of these sequences has a definite pattern that makes it easy to generate additional terms if we assume that those terms follow the same pattern as the displayed terms. However, such patterns can be deceiving, so it is better to have a rule or formula for generating the terms. One way of doing this is to look for a function that relates each term in the sequence to its term number. For example, in the sequence 
2, 4, 6, 8, . . .
each term is twice the term number; that is, the n-th term in the sequence is given by the formula 2n. We denote this by writing the sequence as
2, 4, 6, 8, . . . , 2n, . . .
We call the function f(n) = 2n the general term of this sequence. Now, if we want to know a specific term in the sequence, we need only substitute its term number in the formula for the general term. 
For example, the 37-th term in the sequence is 2・37 = 74.
INFINITE SERIES
The purpose of this section is to discuss sums that contain infinitely many terms. The most familiar examples of such sums occur in the decimal representations of real numbers. 


For example, when we write   in the decimal form  = 0.3333 . . . , we mean 

= 0.3 + 0.03 + 0.003 + 0.0003+…

which suggests that the decimal representation of  can be viewed as a sum of infinitely many real numbers.
SUMS OF INFINITE SERIES
Our first objective is to define what is meant by the “sum” of infinitely many real numbers.
We begin with some terminology.
Definition. An infinite series is an expression that can be written in the form

                                                    (1)
The numbers   а1, а2 , …, аn, … are called the terms of the series.
Let Sn  denote the sum of the initial terms of the series, up to and including the term with index n. Thus,




…			          	                                         (2)


The number Sn  is called the n-th partial sum of the series and the sequence 

S1, S2,  ...,  Sn, ...                                                   (3)
 is called the sequence of partial sums.


As n increases, the partial sum  includes more and more terms of the series. Thus, if  Sn  tends toward a limit as , it is reasonable to view this limit as the sum of all the terms in the series. This suggests the following definition.

Definition.  Let   be the sequence of partial sums of the series (1).


If the sequence  converges to a limit S, , then the series is said to converge to S, and S is called the sum of the series. We denote this by writing


If the sequence of partial sums diverges, then the series is said to diverge. A divergent
series has no sum.
Example 1.  Determine whether the series: 

  
converges or diverges. If it converges, find the sum.
Solution. We turn directly to Definition. The partial sums are 


For any sum is true following things:  



              ...,  
This can be accomplished by using the method of partial fractions to obtain (verify)
We rewrite  Sn:



.
Then

.

The sequence  converges, then the series is converge to S=1.
In many important series, each term is obtained by multiplying the preceding term by some fixed constant. Thus, if the initial term of the series is a and each term is obtained by multiplying the preceding term by q, then the series has the form 

 .                                           (5)
Such series are called geometric series, and the number q  is called the ratio for the series.
Here are some particular cases:





a) If  then ,  and . So {Sn} converges and . 

b) If  then





and  және . So {Sn} converges and . 
If q = 1, then the series is



so the n-th partial sum is  and


This proves divergence. 
If  q = −1, the series is


 so the sequence of partial sums is
a, 0, a, 0, a, 0, . . .
which diverges. 



Now let us consider the case where,  , , . The n-th partial sum of the series is

                                                (6)
Multiplying both sides of (6) by q yields

                                                (7)
and subtracting (7) from (6) gives


or

                                                    (8)
This can be rewritten as

                                                       (9)

1) If |q| < 1, then , so {Sn} converges. From (9)



2) If |q| > 1, then , so {Sn} diverges 
Theorem. A geometric series


converges if |q| < 1 and diverges if |q| ≥ 1. If the series converges, then the sum is 


 Example  2. Determine whether the series 
0.3 + 0.03 + 0.003 + 0.0003+…
converges or diverges. If it converges, find the sum.
Algebraic properties of infinite series
For brevity, the proof of the following result is omitted.
1. Convergence or divergence is unaffected by deleting a finite number of terms from


a series; in particular, for any positive integer m, the series and  both converge or both diverge.


2. If c is a nonzero constant, then the series and  both converge or both
diverge. In the case of convergence, the sums are related by 


 .




3.  If    and   are convergent series, then  are convergent series and the sums of these series are related by . 



[bookmark: _GoBack]4. If at least one of the series   and   is diverge, then are diverges series. 



5. If    and   are diverge series, then  are can convergent or diverge. 
2. CONVERGENCE TESTS
In this section we will develop various tests that can be used to determine whether a given series converges or diverges.

Theorem (The necessary test  of convergencet). If the series converges, then 

.
	Proof. Let us assume that the series converges. The general term an can be written as 

.                                                       (1)


If  S denotes the sum of the series, then , also have. Thus, from (1)

.


Theorem (The Divergence Test). If   , then the series   diverges.
Example. The series

.

Solution. The general term is  .
We check necessary condition for convergence:  

,
The series is diverge.
Example. One of the most important of all diverging series is the harmonic series, 

                                    (7)
which arises in connection with the overtones produced by a vibrating musical string. It is not immediately evident that this series diverges. However, the divergence will become apparent when we examine the partial sums in detail. Because the terms in the series are all positive, the partial sums
We check necessary condition for convergence:  

.
 But this series is divergent. We shall show that.  If the series converges, then we would have had the sum  S  and can write


But, 




As well  there can not be . This means that the series diverges. 
The sufficient conditions for the convergence
	10. The comparison test. We will begin with a test that is useful in its own right and is also the building block for other important convergence tests. The underlying idea of this test is to use the known convergence or divergence of a series to deduce the convergence or divergence of another series. 


Theorem (The Comparison Test)  Let   and be series with nonnegative


terms and suppose that  for any  


(a)  If the “bigger series”  converges, then the “smaller series”  also converges.


(b) If the “smaller series” diverges, then the “bigger series”  also diverges. 
The proof  is easy to visualize why the theorem is true by interpreting the terms in the series as areas of rectangles (Figure 1.) 

The comparison test states that if the total area   is finite, then the total area


 must also be finite; and if the total area  is infinite, then the total area

  must also be infinite.
[image: ]
Figure 1.
For each rectangle, an denotes the area of the blue portion and bn denotes the combined area of the white and blue portions.
Using the comparison test

There are two steps required for using the comparison test to determine whether a series  with positive terms converges:

Step 1. Guess at whether the series  converges or diverges.

Step 2. Find a series that proves the guess to be correct. That is, if we guess that  diverges, we must find a divergent series whose terms are “smaller” than the



corresponding terms of  , and if we guess that   converges, we must find a convergent series whose terms are “bigger” than the corresponding terms of  .

In most cases, the series  being considered will have its general term an expressed as a fraction. To help with the guessing process in the first step, we have formulated two principles that are based on the form of the denominator for an. These principles sometimes suggest whether a series is likely to converge or diverge. We have called these “informal principles” because they are not intended as formal theorems. In fact, we will not guarantee that they always work. However, they work often enough to be useful.
Informal principle  1. Constant terms in the denominator of an can usually be deleted without affecting the convergence or divergence of the series.
Informal principle 2.  If a polynomial in n appears as a factor in the numerator or denominator of an, all but the leading term in the polynomial can usually be discarded without affecting the convergence or divergence of the series.
Example.  Determine whether the series converges or diverges


Solution. We will guess that the given series converges and try to prove this by finding a convergent series that is “bigger” than the given series. We take the geometric series with  the ratio q=1/3.


                                       (*) 
So, series (*) does the trick since



,    ,     ...,      , ...
Thus, we have proved that the given series converges.
Example.  Determine whether the series converges or diverges


Solution. We will guess that the given series diverges and try to prove this by finding a divergent series that is “smaller” than the given series. We take  the harmonic series

                                               (**) 
However, series (**) does the trick since:



,    ,     ...,      , ...



Because, , , ..., . Thus, we have proved that the given series diverges.
The limit comparison test
In the last two examples, we have made the guess about convergence or divergence as well as the series needed to apply the comparison test. Unfortunately, it is not always so straightforward to find the series required for comparison, so we will now consider an alternative to the comparison test that is usually easier to apply. 


Theorem (The Limit Comparison Test)  Let   and be series with positive

terms and suppose that  
If ρ is finite and ρ > 0, then the series both converge or both diverge.
	2°. THE RATIO TEST or D'ALEMBERT TEST
The comparison test and the limit comparison test hinge on first making a guess about convergence and then finding an appropriate series for comparison, both of which can be difficult tasks in cases where Informal principles 1 and 2   cannot be applied. In such cases the next test can often be used, since it works exclusively with the terms of the given series - it requires neither an initial guess about convergence nor the discovery of a series for comparison. 

Theorem (The Ratio Test) Let  be a series with positive terms and suppose that 


(a) If  l < 1, the series converges.

(b) If  l > 1 or ρ = , the series diverges.
(c) If l = 1, the series may converge or diverge, so that another test must be tried.
7-мысал.  Test the given series for convergence






Шешуі.  n-th and  -th  terms  are  , .  The series converges, since

.

And .







	3°. Theorem (The Cauchy Integral Test).   Let  be a series with positive terms. If  f(x) is a function that is decreasing and continuous on an interval  and such that  , , , ... for all n ≥ 1, then   and  both converge or both diverge. 
Example.  Show that the integral test applies, and use the integral test to determine
whether the hyperharmonic series converge or diverge

                                (8)




Solution.  We will use the integral test. Here   ,  And  for all   Assume first that p > 1. меншіксіз интеграл жинақтылығымен бірдей болады. 


If , then . 

If  then  





  or  hyperharmonic series converges   if  and diverges if  . 
The Cauchy Root Test
In cases where it is difficult or inconvenient to find the limit required for the ratio test, the next test is sometimes useful. Since its proof is similar to the proof of the ratio test, we will omit it.

Theorem (The Cauchy Root Test).   Let  be a series with positive terms  and suppose that


(a) If  l < 1, the series converges.

(b) If  l > 1 or ρ = , the series diverges.
(c) If l = 1, the series may converge or diverge, so that another test must be tried.
Example.  Test the given series for convergence


Solution. The series diverges, since


image3.wmf
4

1


image44.wmf
q

a

q

aq

a

S

S

n

n

n

n

-

=

-

-

=

=

¥

®

¥

®

1

1

lim

lim


oleObject52.bin

image45.wmf
¥

=

¥

®

n

n

q

lim


oleObject53.bin

oleObject54.bin

image46.wmf
q

a

aq

S

n

n

-

=

=

å

¥

=

-

1

1

1


oleObject55.bin

image47.wmf
å

¥

=

1

n

n

a


oleObject56.bin

image48.wmf
å

¥

+

=

1

m

n

n

a


oleObject3.bin

oleObject57.bin

oleObject58.bin

image49.wmf
å

¥

=

×

1

n

n

a

с


oleObject59.bin

image50.wmf
=

×

å

¥

=

1

n

n

a

с


oleObject60.bin

image51.wmf
å

¥

=

×

1

n

n

a

с


oleObject61.bin

image52.wmf
А

a

n

n

=

å

¥

=

1


oleObject62.bin

oleObject4.bin

image53.wmf
В

b

n

n

=

å

¥

=

1


oleObject63.bin

image54.wmf
(

)

å

¥

=

±

1

n

n

n

b

a


oleObject64.bin

image55.wmf
(

)

В

А

b

a

n

n

n

±

=

±

å

¥

=

1


oleObject65.bin

oleObject66.bin

oleObject67.bin

oleObject68.bin

oleObject69.bin

oleObject5.bin

oleObject70.bin

oleObject71.bin

image56.wmf
å

¥

=

1

n

n

a


oleObject72.bin

image57.wmf
0

lim

=

¥

®

n

n

a


oleObject73.bin

image58.wmf
1

-

-

=

n

n

n

S

S

a


oleObject74.bin

image59.wmf
S

S

n

n

=

¥

®

lim


oleObject75.bin

oleObject6.bin

image60.wmf
S

S

n

n

=

-

¥

®

1

lim


oleObject76.bin

image61.wmf
(

)

0

lim

lim

1

=

-

=

-

=

-

¥

®

¥

®

S

S

S

S

a

n

n

n

n

n


oleObject77.bin

image62.wmf
0

lim

¹

¥

®

n

n

a


oleObject78.bin

oleObject79.bin

image63.wmf
...

1

1

...

2

1

1

1

1

1

2

1

+

+

+

+

+

+

+

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

n

n


oleObject80.bin

image64.wmf
n

n

n

a

÷

ø

ö

ç

è

æ

=

+

1

1


oleObject7.bin

oleObject81.bin

image65.wmf
0

1

1

lim

lim

¹

=

+

=

÷

ø

ö

ç

è

æ

®¥

®¥

e

n

a

n

n

n

n


oleObject82.bin

image66.wmf
å

¥

=

=

+

+

+

+

+

1

1

...

1

...

3

1

2

1

1

n

n

n


oleObject83.bin

image67.wmf
0

1

lim

lim

=

=

¥

®

¥

®

n

n

n

n

a


oleObject84.bin

image68.wmf
(

)

0

lim

2

=

-

=

-

¥

®

S

S

S

S

n

n

n


oleObject85.bin

image69.wmf
2

1

2

1

2

1

...

2

1

2

1

2

1

...

2

1

1

1

2

=

=

+

+

+

>

+

+

+

+

+

=

-

n

n

n

n

n

n

n

n

n

n

S

S


image4.wmf
å

¥

=

=

+

+

+

+

1

...

...

2

1

n

n

a

n

a

a

a


oleObject86.bin

image70.wmf
2

1

2

>

-

n

n

S

S


oleObject87.bin

image71.wmf
(

)

0

lim

2

=

-

¥

®

n

n

n

S

S


oleObject88.bin

oleObject89.bin

image72.wmf
å

¥

=

1

n

n

b


oleObject90.bin

image73.wmf
n

n

b

a

£


oleObject91.bin

oleObject8.bin

image74.wmf
o

n

n

>


oleObject92.bin

oleObject93.bin

oleObject94.bin

oleObject95.bin

oleObject96.bin

oleObject97.bin

oleObject98.bin

oleObject99.bin

oleObject100.bin

image5.wmf
1

1

a

S

=


image75.png
by

by

by

by,

bs





oleObject101.bin

oleObject102.bin

oleObject103.bin

oleObject104.bin

oleObject105.bin

oleObject106.bin

oleObject107.bin

image76.wmf
...

3

...

3

3

3

2

1

1

1

2

1

1

+

×

+

+

×

+

×

+

-

n

n


oleObject108.bin

oleObject9.bin

image77.wmf
...

3

...

3

3

1

1

1

2

1

1

+

+

+

+

+

-

n


oleObject109.bin

image78.wmf
÷

ø

ö

ç

è

æ

<

=

1

3

1

q


oleObject110.bin

image79.wmf
3

1

3

2

1

<

×


oleObject111.bin

image80.wmf
2

2

3

1

3

3

1

<

×


oleObject112.bin

image81.wmf
1

1

3

1

3

1

-

-

<

×

n

n

n


oleObject113.bin

image6.wmf
2

1

2

a

a

S

+

=


image82.wmf
(

)

...

1

1

...

2

3

1

1

2

1

+

-

×

+

+

×

+

×

n

n


oleObject114.bin

image83.wmf
...

1

...

3

1

2

1

1

+

+

+

+

+

n


oleObject115.bin

image84.wmf
1

2

1

2

1

×

<


oleObject116.bin

image85.wmf
2

3

1

3

1

×

<


oleObject117.bin

image86.wmf
(

)

1

1

1

-

×

<

n

n

n


oleObject118.bin

oleObject10.bin

image87.wmf
2

2

2

1

2

=

<

×


oleObject119.bin

image88.wmf
2

3

3

2

3

=

<

×


oleObject120.bin

image89.wmf
(

)

2

1

n

n

n

n

=

<

-

×


oleObject121.bin

oleObject122.bin

oleObject123.bin

image90.wmf
n

n

n

b

a

+¥

®

=

lim

r


oleObject124.bin

image7.wmf
n

n

a

a

a

S

+

+

+

=

...

2

1


oleObject125.bin

image91.wmf
l

a

a

n

n

n

=

+

¥

®

1

lim


oleObject126.bin

image92.wmf
¥

+


oleObject127.bin

image93.wmf
...

)!

1

2

(

1

...

!

5

1

!

3

1

1

+

-

+

+

+

+

n


oleObject128.bin

image94.wmf
(

)

1

+

n


oleObject129.bin

image95.wmf
)!

1

2

(

1

-

=

n

n

a


oleObject11.bin

oleObject130.bin

image96.wmf
(

)

)!

1

2

(

1

)!

1

1

2

(

1

1

+

=

-

+

=

+

n

n

n

a


oleObject131.bin

image97.wmf
=

+

×

×

-

-

=

-

+

=

¥

®

¥

®

+

¥

®

)

1

2

(

2

)!

1

2

(

)!

1

2

(

lim

)!

1

2

(

1

:

)!

1

2

(

1

lim

lim

1

n

n

n

n

n

n

a

a

n

n

n

n

n


oleObject132.bin

image98.wmf
0

)

1

2

(

2

1

lim

=

+

×

=

¥

®

n

n

n


oleObject133.bin

image99.wmf
1

0

<

=

l


oleObject134.bin

oleObject135.bin

image8.wmf
{

}

n

S


image100.wmf
1

³

x


oleObject136.bin

image101.wmf
)

1

(

1

f

a

=


oleObject137.bin

image102.wmf
)

2

(

2

f

a

=


oleObject138.bin

image103.wmf
)

(

n

f

n

a

=


oleObject139.bin

oleObject140.bin

image104.wmf
ò

¥

1

)

(

dx

x

f


oleObject12.bin

oleObject141.bin

image105.wmf
...

1

...

3

1

2

1

1

+

+

+

+

+

g

g

g

n


oleObject142.bin

image106.wmf
g

n

n

f

a

n

1

)

(

=

=


oleObject143.bin

image107.wmf
...

,

2

,

1

=

n


oleObject144.bin

image108.wmf
g

x

x

f

1

)

(

=


oleObject145.bin

oleObject146.bin

oleObject13.bin

image109.wmf
1

=

g


oleObject147.bin

image110.wmf
(

)

(

)

¥

=

-

=

=

¥

®

¥

®

¥

ò

1

ln

ln

lim

ln

lim

1

1

b

x

x

b

b

b

dx


oleObject148.bin

image111.wmf
1

¹

g


oleObject149.bin

image112.wmf
(

)

ï

î

ï

í

ì

=

-

=

÷

÷

ø

ö

ç

ç

è

æ

=

<

¥

>

-

-

+

-

-

¥

®

+

-

¥

®

¥

ò

1

1

lim

lim

,

1

,

1

1

1

1

1

1

1

1

1

g

g

g

g

g

g

g

g

b

x

b

b

b

x

dx


oleObject150.bin

image113.wmf
ò

¥

1

g

x

dx


oleObject151.bin

image9.wmf
¥

®

n


image114.wmf
1

>

g


oleObject152.bin

image115.wmf
1

£

g


oleObject153.bin

oleObject154.bin

image116.wmf
l

a

n

n

n

=

¥

®

lim


oleObject155.bin

oleObject156.bin

image117.wmf
å

÷

ø

ö

ç

è

æ

¥

=

+

-

1

1

2

3

4

n

n

n

n


oleObject157.bin

oleObject14.bin

image118.wmf
1

2

1

2

3

4

lim

lim

>

=

+

-

=

=

¥

®

¥

®

n

n

a

l

n

n

n

n


oleObject158.bin

oleObject15.bin

oleObject16.bin

image10.wmf
S

S

n

n

=

¥

®

lim


oleObject17.bin

image11.wmf
å

¥

=

=

+

+

+

+

=

1

...

...

2

1

n

n

n

a

a

a

a

S


oleObject18.bin

image12.wmf
(

)

...

1

1

...

3

2

1

2

1

1

+

+

×

+

+

×

+

×

n

n


oleObject19.bin

image13.wmf
(

)

1

1

...

3

2

1

2

1

1

+

×

+

+

×

+

×

=

n

n

S

n


oleObject20.bin

image14.wmf
;

2

1

1

2

1

1

-

=

×


oleObject21.bin

image15.wmf
;

3

1

2

1

3

2

1

-

=

×


oleObject22.bin

image16.wmf
1

1

1

)

1

(

1

+

-

=

+

n

n

n

n


oleObject23.bin

image17.wmf
(

)

+

-

+

-

=

+

×

+

+

×

+

×

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

=

3

1

2

1

2

1

1

1

1

1

...

3

2

1

2

1

1

n

n

n

S


oleObject24.bin

image18.wmf
1

1

1

1

1

1

...

4

1

3

1

+

-

=

+

-

+

+

-

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

+

n

n

n


oleObject25.bin

image19.wmf
1

1

1

1

lim

lim

=

+

-

=

=

÷

ø

ö

ç

è

æ

®¥

®¥

n

S

S

n

n

n


oleObject26.bin

oleObject27.bin

image20.wmf
å

¥

-

=

=

+

+

+

+

+

1

1

2

...

...

n

n

n

aq

aq

aq

aq

a


oleObject28.bin

image21.wmf
0

=

a


oleObject29.bin

image22.wmf
...

0

...

0

0

+

+

+

+


oleObject30.bin

image23.wmf
0

0

...

0

0

=

+

+

+

=

n

S


oleObject31.bin

image1.wmf
2

1


image24.wmf
0

0

lim

lim

=

=

¥

®

¥

®

n

n

n

S


oleObject32.bin

image25.wmf
0

=

S


oleObject33.bin

image26.wmf
0

=

q


oleObject34.bin

image27.wmf
...

0

...

0

+

+

+

+

a


oleObject35.bin

image28.wmf
a

a

n

S

=

=

+

+

+

0

...

0


oleObject36.bin

oleObject1.bin

image29.wmf
a

a

S

n

n

n

=

=

¥

®

¥

®

lim

lim


oleObject37.bin

image30.wmf
a

S

=


oleObject38.bin

image31.wmf
...

...

+

+

+

+

a

a

a


oleObject39.bin

image32.wmf
a

n

a

a

a

S

n

×

=

=

+

+

+

...


oleObject40.bin

image33.wmf
¥

=

=

¥

®

¥

®

na

S

n

n

n

lim

lim


oleObject41.bin

image2.wmf
3

1


image34.wmf
(

)

...

1

...

1

+

-

+

+

-

+

-

-

a

a

a

a

a

n


oleObject42.bin

image35.wmf
0

¹

a


oleObject43.bin

image36.wmf
0

¹

q


oleObject44.bin

image37.wmf
1

±

¹

q


oleObject45.bin

image38.wmf
n

aq

aq

aq

a

n

S

+

+

+

+

=

...

2


oleObject46.bin

oleObject2.bin

image39.wmf
1

3

2

...

+

+

+

+

+

=

n

aq

aq

aq

aq

n

qS


oleObject47.bin

image40.wmf
1

+

-

=

-

n

n

n

aq

a

q

S

S


oleObject48.bin

image41.wmf
(

)

1

1

+

-

=

-

n

n

aq

a

S

q


oleObject49.bin

image42.wmf
q

aq

a

S

n

n

-

-

=

1


oleObject50.bin

image43.wmf
0

lim

=

¥

®

n

n

q


oleObject51.bin


Lecture 7


 


DEFINITION OF A SEQUENCE


 


In everyday language, the term “sequence” means a succession of things in a 


definite


 


order


-


chronological order, size order, or logical order, for example. In 


mathematics, the term “sequence” is commonly used to denote a 


succession of 


numbers whose order is determined by a rule or a function. 


W


e will develop some of 


the basic ideas concerning sequences of numbers.


 


Stated informally, an 


infinite sequence


, or more simply a 


sequence


, is an unending 


succession


 


of numbers, call


ed 


terms


. It is understood that the terms have a definite 


order; that


 


is, there is a first term 


a


1


, a second term 


a


2


, a third term 


a


3


, a fourth term 


a


4


, and so forth.


 


Such a sequence would typically be written as


 


a


1


, a


2


, a


3


, a


4


, . . .


 


where the dots are us


ed to indicate that the sequence continues indefinitely. Some 


specific


 


examples are


 


1


, 


2


, 


3


, 


4


, . . . , 


                               


1


, 


2


1


, 


3


1


, 


4


1


, . . . ,


 


2


, 


4


, 


6


, 


8


, . . . , 


 


 


 


 


1


,


?


1


, 


1


,


?


1


, . . .


 


Each of these sequences has a definite pattern that makes it easy to generate 


additional


 


terms if


 


we


 


assume that those terms follow the same pattern as the 


displayed terms


. However, such patterns can be deceiving, so it is better to have a 


rule or formula for generating the


 


terms. One way of doing this is to look for a 


function that relates each term in the sequence


 


to its term number. For example, in the 


sequence


 


 


2


, 


4


, 


6


, 


8


, . . .


 


each term is twice the term number; that is, the 


n


-


th term 


in the sequence is given by 


the


 


formula 2


n


. We denote 


this by writing the sequence as


 


2


, 


4


, 


6


, 


8


, . . . , 


2


n, . . .


 


We call the function 


f(n) 


= 


2


n 


the 


general term 


of this sequence. Now, if we want to 


know


 


a specific term in the sequence, we need only subs


titute its term number in the 


formula for


 


the general term. 


 


For example, the 37


-


th term in the sequence is 2


・


37 


= 


74.


 


INFINITE SERIES


 


The purpose of this section is to discuss sums that contain infinitely many terms. The 


most familiar examples of such su


ms occur in the decimal representations of real 


numbers. 


 


For example, when we write 


3


1


  


in the decimal form 


3


1


 


= 


0


.


3333 


. . . , 


we mean


 


 


3


1


= 


0


.


3 


+ 


0


.


03 


+ 


0


.


003 


+ 


0


.


0003


+


…


 


which suggests that the


 


decimal representation of 


3


1


 


can be viewed as a sum of 


infinitely


 


many real numbers.


 


SUMS OF INFINITE SERIES


 


Our first objective is to define what is meant by the “sum” of infinitely many real 


numbers.


 


We begin with some terminology.


 


D


efinition


.


 


An 


infinite series 


is an expression that can be written in the form
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3
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   in the decimal form 

3

1

  =  0 . 3333  . . . ,  we mean    

3

1

=  0 . 3  +  0 . 03  +  0 . 003  +  0 . 0003 + …   which suggests that the   decimal representation of 

3

1
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